US009459808B2

a2 United States Patent

Benhase et al.

US 9,459,808 B2
Oct. 4, 2016

(10) Patent No.:
45) Date of Patent:

(54) AUTOMATICALLY PREVENTING LARGE
BLOCK WRITES FROM STARVING SMALL
BLOCK WRITES IN A STORAGE DEVICE
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72)

Inventors: Michael T. Benhase, Tucson, AZ (US);

Andrew D. Walls, San Jose, CA (US)

International Business Machines
Corporation, Armonk, NY (US)

(73) Assignee:

*) Notice: Subject to any disclaimer, the term of this
] y
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

1) 14/993,315

(22)

Appl. No.:

Filed: Jan. 12, 2016

(65) Prior Publication Data

US 2016/0124655 Al May 5, 2016

Related U.S. Application Data

Continuation of application No. 14/719,680, filed on
May 22, 2015, now Pat. No. 9,250,860, which is a
continuation of application No. 13/550,141, filed on
Jul. 16, 2012, now Pat. No. 9,043,572.

(63)

Int. CL.
GO6F 12/00
GO6F 3/06
GO6F 12/02
GO6F 13/00
GO6F 3/00
GO6F 5/14
GO6F 12/14

(51)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)
(2006.01)

(Continued)

(52) US.CL

CPC GOGF 3/064 (2013.01); GOGF 3/00
(2013.01); GOGF 3/061 (2013.01); GOGF

3/0604 (2013.01); GOGF 3/067 (2013.01);

DETERMINE SMALL BLOCK
PERCENTAGE

902 E
93

BUFFER WRITE
904
SMALL BLOCH
I\ BUFFER?
NO
09
NO ARGE BLOC!
IN BUFFER?
YES

910

COMPLETE WRITE

811

SEND COMPLETE MESSAGE
TO INITIATOR

GO6F 3/0611 (2013.01); GO6F 3/0656

(2013.01); GO6F 3/0688 (2013.01); GO6F

5/14 (2013.01); GO6F 12/023 (2013.01);

GO6F 12/0893 (2013.01); GOGF 12/1425

(2013.01); GOGF 13/00 (2013.01); GO6F

13/385 (2013.01); GOGF 3/0608 (2013.01);

GO6F 2212/1044 (2013.01); GO6F 2212/1052

(2013.01); GOGF 2212/2022 (2013.01); GO6F

2212/60 (2013.01); GO6F 2213/3802 (2013.01)

(58) Field of Classification Search
None

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,814,276 B2
7,865,664 B2

10/2010 Lin et al.
1/2011 Mori et al.

(Continued)

OTHER PUBLICATIONS

U.S. Appl. No. 13/550,141.
(Continued)

Primary Examiner — Brian Peugh
(74) Attorney, Agent, or Firm — Stephen R. Tkacs;
Stephen J. Walder, Jr.; Randall J. Bluestone

(57) ABSTRACT

A mechanism is provided in a storage device for performing
a write operation. The mechanism configures a write buffer
memory with a plurality of write buffer portions. Each write
buffer portion is dedicated to a predetermined block size
category within a plurality of block size categories. For each
write operation from an initiator, the mechanism determines
a block size category of the write operation. The mechanism
performs each write operation by writing to a write buffer
portion within the plurality of write buffer portions corre-
sponding to the block size category of the write operation.

22 Claims, 7 Drawing Sheets

SEND COMPLETE MESSAGE
TO INITIATOR
907

UPDATE SMALL BLOCK
WRITE COUNT

908
YES PERCENTAGE
REACHED?

NO

US 9,459,808 B2
Page 2

(51) Int. CL
GOGF 13/38

GO6F 12/08

(56)

7,941,595

8,566,560
2007/0143378
2009/0132770
2009/0198945
2010/0161888
2010/0205369
2010/0241788
2011/0125946

(2006.01)
(2016.01)

References Cited

U.S. PATENT DOCUMENTS

B2
B2
Al
Al
Al
Al
Al
Al
Al

5/2011
10/2013
6/2007
5/2009
8/2009
6/2010
8/2010
9/2010
5/2011

Bullen et al.
Sekhar
Gorobets

Lin et al.
Sekhar
Eggleston
Chang et al.
Yeh

Demura et al.

OTHER PUBLICATIONS

U.S. Appl. No. 14/719,680.

“RamSan-500", Brochure, Texas Memory Systems, an http://www.
ramsan.com/files/download/587, retrieved Jul. 16, 2012, 2 pages.
Debnath, Biplob et al., “Large Block CLOCK (LB-CLOCK): A
Write Caching Alogorithrn for Solid State Disks”, IEEE Int’l
Symposium on Modeling, Analysis & Simulation of Computer and
Telecommunications Systems, 2009, 9 pages.

Hutsell Woody, “An In-depth Look at the RamSan-500 Cached
Flash Solid State Disk”, Texas Memory Systems, White Paper, Sep.
2007, 17 pages.

Lee, Junghee et al, “A Semi-Preemptive Garbage Collector for Solid
State Drives”, 2011 IEEE Int’l. Symposium on Performance Analy-
sis of Systems and Software, Apr. 2011, 10 pages.

Yang, Ding P., “A Design of Buffer Scheme by Using Data Filter for
Solid State Disk”, Thesis, University of Cincinnati, Feb. 24, 2007,
65 pages.

U.S. Patent Oct. 4, 2016 Sheet 1 of 7 US 9,459,808 B2

STORAGE
3YSTEM

FABRIC

Ry s |

CLIENT

gjm

CLIENT

STORAGE

FABRIC

BYSTEM) == ' e — 114
SERVER FIG.] CLIENT
06 | PROCESSING - '7'
) | Process o FIG.2
210 202] [208
o — ~
21 2 224
GRAPHICS W N oo [N MAIN A8 B =
PROCESSOR v ™7 —| MEMORY
AUDIO sio || rom
oo] [ADAPTER
240 = 238 T T 9
— —
BUS SB/ICH BUS
226 230 232 234 220 222
> (‘J - (—_“ J l) 2‘12 L’] - L‘) . L") ~ L’) -
cD- — | USBAND . KEYBOARD
BISK 1| rom NETWORK OTHER gg\‘ji‘g‘; AND MOUSE | | MODEM
AE)A&PTEF.{ PORTS ’ ADAPTER

U.S. Patent Oct. 4, 2016 Sheet 2 of 7 US 9,459,808 B2

STORAGE SYSTEM
FiG. 3

R STORAGE HO

302 74 CONTROLLER INTERFACE
300 '\ I g

304 N SWITCH 306

Sl

FiG. 4 4037/ WRITE /

A

SM_CNTR LG CNTR ™\
421 422 423

(Y 4 I [a T 4 I [\ 4
: ; ~
| BUFFER MEMORY ~ 320
|
| i
| |

1\ A A J
Y Y Y

SMALL LARGE SHARED

U.S. Patent Oct. 4, 2016 Sheet 3 of 7

US 9,459,808 B2

INITIATOR ~ 550
A
L
|
502;// WRITE / ﬁ
2
P
<
510 S
Ay
511 512
Ty)
SM_CNTR LG_CNTR
BUFFER
A 4
BUFFER MEMORY ~ SN

COMPLETE

WRITE
op?

1003
)

SEND WRITE OPERATION TO
STORAGE DEVICE

LARGE WRITE
OUTSTANDING?

U.S. Patent

FiG. 6

Oct. 4, 2016

Sheet 4 of 7

0" seam
801
-~

4

DETERMINE SMALL BLOCK
BUFFER SIZE AND LARGE
BLOCK BUFFER SIZE

Ty i

CONFIGURE SMALL AND
LARGE BLOCK BUFFERS

3 v

BEGIN TIME INTERVAL

SMALL

lg
>y

US 9,459,808 B2

WRITE

YES YES
BUFFER SUFFER
FULLY FULL?
608 NO
oy
WRITE TO SMALL BUFFER < WRITE TO LARGE BUFFER
609 61
1\ el
RECORD SMALL BLOCK J RECORD LARGE BLOCK
) DELAY >1< DELAY Nl
O
\%35
YES ATERVARN NO

END?

U.S. Patent Oct. 4, 2016 Sheet 5 of 7

FIG. 7

709 BEGIN

701
)

DETERMINE SMALL BLOCK
BUFFER SIZE AND LARGE
BLOCK BUFFER SIZE

2 v

CONFIGURE SMALL, LARGE,
AND SHARED BUFFERS

v

BEGIN TIME INTERVAL

US 9,459,808 B2

YES

708
)

707

SMALL
BUFFER
FULL?

704

WRITE TO SMALL BUFFER

YES

BUFFER
FULL?

NO

WRITE TO LARGE BUFFER

A

HARED

714
SHARED

YES

BUFFER BUFFER
FULL? FULL?
710 NO 715 NO
M\ T\
WRITE TO SHARED BUFFER < WRITE TO SHARED BUFFER
741 716
ey ey
RECORD SMALL BLOCK J RECORD LARGE BLOCK
> DELAY < DELAY “

B—x

YES

END?

\{95
NTERVADN, NO

U.S. Patent Oct. 4, 2016 Sheet 6 of 7 US 9,459,808 B2

FIG. 8
SN sEam)
80"

7 A

CONFIGURE DEDICATED SMALL
AND LARGE BLOCK BUFFERS
AND SHARED BUFFER

-

) X

> BEGIN TIME INTERVAL

w0 A
PERFORM WRITES TO SMALL
BLOCK, LARGE BLOCK, AND |
SHARED BUFFERS AND COUNT

WRITES

805
Ty

ENABLE/DISABLE DEDICATED
SMALL BLOCK OR DEDICATED
LARGE BLOCK BUFFER(S)
BASED ON WRITE COUNTS

U.S. Patent

901
()

Oct. 4, 2016

FiG. 9

WA BEan)

A

DETERMINE SMALL BLOCK
PERCENTAGE

903
(|

o
Y

4

902

WRITE
OoP?

BUFFER WRITE

i
v

904

SMALL BLOCK
IN BUFFER?

LARGE BLOCK
IN BUFFER?

COMPLETE WRITE

N N

SEND COMPLETE MESSAGE
TO INITIATCR

A

Sheet 7 of 7

COMPLETE WRITE

SEND COMPLETE MESSAGE
TOINITIATOR

[\ 4

UPDATE SMALL BLOCK
WRITE COUNT

PERCENTAGE
REACHED?

NO

US 9,459,808 B2

US 9,459,808 B2

1

AUTOMATICALLY PREVENTING LARGE
BLOCK WRITES FROM STARVING SMALL
BLOCK WRITES IN A STORAGE DEVICE

BACKGROUND

The present application relates generally to an improved
data processing apparatus and method and more specifically
to mechanisms for automatically preventing large block
writes from starving small block writes in a storage device,
such as a solid-state drive or solid-state drive subsystem.

A solid-state drive (SSD) is a data storage device that uses
solid-state memory like NAND Flash to store persistent
data. Solid State Disks can refer to many different form
factors including those that have similar protocol access of
a traditional block I/O hard disk drive. The term SSD can
also refer to form factors that are not common with hard disk
drives (HDDs) like peripheral component interconnect
express (PCIE) cards or custom form factors. SSDs are
distinguished from traditional HDDs, which are electrome-
chanical devices containing spinning disks and movable
read/write heads. SSDs, in contrast, use microchips that
retain data in non-volatile memory chips and contain no
moving parts. Compared to electromechanical HDDs, SSDs
are typically less susceptible to physical shock, are quieter,
and have lower access time and latency. SSDs do come in
forms that have the same interface as hard disk drives like
serial attached small computer systems interface (SAS),
serial advanced technology attachment (SATA), and Fibre
Channel, thus allowing clients to use the two types inter-
changeably in most available storage systems today. In some
applications, a client may use all SSDs, while in many
applications the client might use a mixture of the two types.

SSDs are starting to revolutionize the data center as
heretofore unheard of levels of performance are now pos-
sible. Servers can bring in more data, and the input/output
(I0) bottleneck that caused faster and faster processors to
wait more often is much less of a problem. Storage systems
are also starting to use SSDs as tiers of storage alongside
HDDs. In some cases, pure SSD configurations are starting
to be used. Because SSDs hold vital client data, it is
important that the drives still have some sort of disaster
recovery solution applied to them like flash copy or peer-
to-peer remote copy or both.

These operations can result in multiple concurrent streams
of commands to the SSD. The user may be issuing a
combination of read and write operations. In many online
transaction processing (OLTP) environments, the data size
of these operations are relatively small. Perhaps 4 K bytes
and even smaller for mainframe systems. The snap shot and
remote copy operation may result in very large block writes,
say 128 K or 256 KB or even larger. This is one reason an
SSD may see an intermix of both large and small block
writes. Other applications will also result in the same effect
but for different reasons.

As users start to adopt NAND Flash SSDs in more
applications, some of the complexities of their usage are
becoming apparent. While they perform much faster than
HDDs, they can not simply be overwritten as an HDD can,
therefore, data must be virtualized and a map table created
to store physical to logical map information. Update writes
cause invalidates to parts of the map table and therefore
garbage collection must take place in order to reclaim space
that is not being used. This garbage collection process must
be performed concurrently with host operations and care
must be taken so that it will not cause inconsistent perfor-
mance.

10

20

25

30

35

40

45

50

55

60

65

2

Additionally, the nature of writes poses issues for SSDs in
many other ways. A write operation to NAND Flash must
take place at a certain minimum granularity referred to
hereafter as a page. A page in current Flash devices is 8 K
and seems to be headed to 16 K bytes. Before a write can
take place, the erase block must first have been erased. An
erase block contains many pages. [t canbe 512 K up to 2 MB
and even larger. Erases take place in the back ground as
blocks are reclaimed but they can take many milliseconds to
successfully erase.

Although an SSD can perform many thousands of writes
it does so by the use of parallelism. Each Flash die is very
slow at performing a write and it can take up to 2 ms to write
a page. Although modern Flash are designed to have 2 or 4
planes, it still means that a given Flash die can only write up
to 4 pages concurrently. This means that some commands
have to wait in queues before they can be completed.

These are a few specific issues that cause complexity with
keeping Flash performance and latency consistent, and spe-
cifically with regards to writes. One can see that the writing
of large blocks can keep more Flash die busy and therefore
can cause small block writes to endure large waits.

SUMMARY

In one illustrative embodiment, a method, in a data
processing system, is provided for performing a write opera-
tion. The method comprises configuring a write buffer
memory with a plurality of write buffer portions. Each write
buffer portion is dedicated to a predetermined block size
category within a plurality of block size categories. The
method further comprise for each write operation from an
initiator, determining a block size category of the write
operation. The method further comprises performing each
write operation by writing to a write buffer portion within
the plurality of write buffer portions corresponding to the
block size category of the write operation.

In other illustrative embodiments, a computer program
product comprising a computer useable or readable medium
having a computer readable program is provided. The com-
puter readable program, when executed on a computing
device, causes the computing device to perform various ones
of, and combinations of, the operations outlined above with
regard to the method illustrative embodiment.

In yet another illustrative embodiment, a system/appara-
tus is provided. The system/apparatus may comprise one or
more processors and a memory coupled to the one or more
processors. The memory may comprise instructions which,
when executed by the one or more processors, cause the one
or more processors to perform various ones of, and combi-
nations of, the operations outlined above with regard to the
method illustrative embodiment.

These and other features and advantages of the present
invention will be described in, or will become apparent to
those of ordinary skill in the art in view of, the following
detailed description of the example embodiments of the
present invention.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention, as well as a preferred mode of use and
further objectives and advantages thereof, will best be
understood by reference to the following detailed descrip-
tion of illustrative embodiments when read in conjunction
with the accompanying drawings, wherein:

US 9,459,808 B2

3

FIG. 1 depicts a pictorial representation of an example
distributed data processing system in which aspects of the
illustrative embodiments may be implemented;

FIG. 2 is a block diagram of an example data processing
system in which aspects of the illustrative embodiments may
be implemented;

FIG. 3 is a block diagram depicting an example storage
system in accordance with an illustrative embodiment;

FIG. 4 is a block diagram illustrating a mechanism for
preventing large block writes from starving small block
writes in accordance with an illustrative embodiment;

FIG. 5 is a block diagram illustrating a mechanism for
keeping bandwidth equal between large block writes and
small block writes in accordance with an illustrative
embodiment;

FIG. 6 is a flowchart illustrating operation of a mechanism
for preventing large block writes from starving small block
writes in accordance with an illustrative embodiment;

FIG. 7 is a flowchart illustrating operation of a mechanism
for preventing large block writes from starving small block
writes using small, large, and shared write buffers in accor-
dance with an illustrative embodiment;

FIG. 8 is a flowchart illustrating operation of a mechanism
for preventing large block writes from starving small block
writes using dedicated small and large write buffers in
accordance with an illustrative embodiment;

FIG. 9 is a flowchart illustrating operation of a mechanism
in a solid-skate drive for balancing bandwidth between large
block writes and small block writes in accordance with an
illustrative embodiment; and

FIG. 10 is a flowchart illustrating operation of mechanism
in an initiator for balancing bandwidth between large block
writes and small block writes in accordance with an illus-
trative embodiment.

DETAILED DESCRIPTION

The illustrative embodiments may be utilized in many
different types of data processing environments including a
distributed data processing environment, a single data pro-
cessing device, or the like. In order to provide a context for
the description of the specific elements and functionality of
the illustrative embodiments, FIGS. 1-3 are provided here-
after as example environments in which aspects of the
illustrative embodiments may be implemented. While the
description following FIGS. 1-3 will focus primarily on a
single data processing device implementation, this is only an
example and is not intended to state or imply any limitation
with regard to the features of the present invention.

With reference now to the figures and in particular with
reference to FIGS. 1-3, example diagrams of data processing
environments are provided in which illustrative embodi-
ments of the present invention may be implemented. It
should be appreciated that FIGS. 1-3 are only examples and
are not intended to assert or imply any limitation with regard
to the environments in which aspects or embodiments of the
present invention may be implemented. Many modifications
to the depicted environments may be made without depart-
ing from the spirit and scope of the present invention.

With reference now to the figures, FIG. 1 depicts a
pictorial representation of an example distributed data pro-
cessing system in which aspects of the illustrative embodi-
ments may be implemented. Distributed data processing
system 100 may include a network of computers, commu-
nication fabrics, and storage systems in which aspects of the
illustrative embodiments may be implemented. The distrib-
uted data processing system 100 contains at least one

10

15

20

25

30

35

40

45

50

55

60

65

4

network 102, which is the medium used to provide commu-
nication links between various devices and computers con-
nected together within distributed data processing system
100. The network 102 may include connections, such as
wire, wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 are
connected to network 102. Server 104 is also connected to
storage system 134 via fabric 124, and server 106 is con-
nected to storage system 136 via fabric 126. In addition,
clients 110, 112, and 114 are also connected to network 102.
These clients 110, 112, and 114 may be, for example,
personal computers, network computers, or the like. In the
depicted example, server 104 may provide data, such as boot
files, operating system images, and applications to the
clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in the depicted example. Distributed
data processing system 100 may include additional servers,
clients, and other devices not shown.

In the depicted example, distributed data processing sys-
tem 100 is the Internet with network 102 representing a
worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP)
suite of protocols to communicate with one another. At the
heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host comput-
ers, consisting of thousands of commercial, governmental,
educational and other computer systems that route data and
messages. Of course, the distributed data processing system
100 may also be implemented to include a number of
different types of networks, such as for example, an intranet,
a local area network (LAN), a wide area network (WAN), or
the like. As stated above, FIG. 1 is intended as an example,
not as an architectural limitation for different embodiments
of the present invention, and therefore, the particular ele-
ments shown in FIG. 1 should not be considered limiting
with regard to the environments in which the illustrative
embodiments of the present invention may be implemented.

Fabrics 124, 126 may be any communications fabric that
supports I/O traffic between a host and a storage system. For
example, fabrics 124, 126 may be Fibre Channel, serial
attached SCSI, Ethernet, or the like, and may include
switches or routers to support /O communication. Fabrics
124, 126 may also support connection to network 102. For
example, server 106 may access storage system 134 via
network 102 and fabric 124 without intervention of server
104. Similarly, server 104 may access storage system 136
without intervention of server 106.

In accordance with an illustrative embodiment, distrib-
uted data processing system 100 provides a dual remote
copy configuration for disaster recovery. That is, when
server 104 performs a write operation to storage system 134,
the write operation is also performed at storage system 136.
The dual remote copy may be performed by the host, such
as server 104, or by the storage system itself, such as storage
system 134. For example, server 104 may write data to
storage system 134 and have the data copied to storage
system 136 such that if storage system 134 were to fail,
server 104 may then read the data from storage system 136.

Storage system 136 may be placed at a remote location
from storage system 134, perhaps on a different continent.
Thus, if there was a disaster, such as a tire or the like, and
storage system 134 was destroyed, the data would be safe at
storage system 136, and storage system 134 could be rec-
reated using the data at storage system 136.

Storage systems 134, 136 may use solid-state drives
(SSDs), either alone or alongside hard disk drives (HDDs)
in a tiered storage configuration. In the case of peer-to-peer

US 9,459,808 B2

5

remote copy, SSDs may be used as a target for such an
operation and large block writes will occur to the drives.
SSDs are normally used to store small block 10 operations
(OPs). During a target copy operation, large block and small
block writes may occur simultaneously. There are other
reasons for large blocks to occur as well. During such
periods, due to the nature of the SSDs, the large block writes
can dominate the bandwidth available in the device and have
the effect of starving the small block writes, thus increasing
the response time. In many cases, transaction processing
environments need guaranteed response time and such an
increase can be disastrous.

In accordance with the illustrative embodiments, a
mechanism is provided to allow both large block and small
block writes optimal bandwidth and to automatically adjust
depending on changes in the workload. Write buffers or
caches in the storage device are broken into categories.
Some of the buffers are dedicated to large block writes, some
to small block writes, and some buffers serve both small and
large block writes. This allotment prevents a rapid succes-
sion of large write commands from taking over the entire
buffer and therefore locking out small block writes until the
large block can complete. A small block transfer will com-
plete relatively quickly and, therefore, the large block trans-
fers will not suffer much added latency from what they
would naturally cause. The mechanism may adjust the sizes
of these buffers depending on changes in the workload. The
mechanism may determine that small block or large block
response time increases. The mechanism may dedicate a
bandwidth percentage to small block writes to ensure small
block writes are not starved. The size of small block vs. large
block may be experimentally derived or may be adjusted
dynamically as workload changes. It is also possible to have
more than two block sizes and do very similar partitioning
with additional categories.

With reference now to FIG. 2, a block diagram of an
example data processing system is shown in which aspects
of the illustrative embodiments may be implemented. Data
processing system 200 is an example of a computer, such as
client 110 or server 104 in FIG. 1, in which computer usable
code or instructions implementing the processes for illus-
trative embodiments of the present invention may be
located.

In the depicted example, data processing system 200
employs a hub architecture including north bridge and
memory controller hub (NB/MCH) 202 and south bridge
and input/output (I/O) controller hub (SB/ICH) 204. Pro-
cessing unit 206, main memory 208, and graphics processor
210 are connected to NB/MCH 202. Graphics processor 210
may be connected to NB/MCH 202 through an accelerated
graphics port (AGP).

In the depicted example, local area network (LAN)
adapter 212 connects to SB/ICH 204. Audio adapter 216,
keyboard and mouse adapter 220, modem 222, read only
memory (ROM) 224, hard disk drive (HDD) 226, CD-ROM
drive 230, universal serial bus (USB) ports and other com-
munication ports 232, and PCI/PCle devices 234 connect to
SB/ICH 204 through bus 238 and bus 240. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards,
and PC cards for notebook computers. PCI uses a card bus
controller, while PCle does not. ROM 224 may be, for
example, a flash basic input/output system (BIOS).

HDD 226 and CD-ROM drive 230 connect to SB/ICH
204 through bus 240. HDD 226 and CD-ROM drive 230
may use, for example, an integrated drive electronics (IDE)

10

15

20

25

30

35

40

45

50

55

60

65

6
or serial advanced technology attachment (SATA) interface.
Super /O (S10) device 236 may be connected to SB/ICH
204.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of vari-
ous components within the data processing system 200 in
FIG. 2. As a client, the operating system may be a commer-
cially available operating system such as Microsoft® Win-
dows® XP (Microsoft and Windows are trademarks of
Microsoft Corporation in the United States, other countries,
or both). An object-oriented programming system, such as
the Java™ programming system, may run in conjunction
with the operating system and provides calls to the operating
system from Java™ programs or applications executing on
data processing system 200 (Java is a trademark of Sun
Microsystems, Inc. in the United States, other countries, or
both).

As a server, data processing system 200 may be, for
example, an IBM® eServer™ System P® computer system,
running the Advanced interactive Executive (AIX®) oper-
ating system or the LINUX® operating system (eServer,
System p, and AIX are trademarks of International Business
Machines Corporation in the United States, other countries,
or both while LINUX is a trademark of Linus Torvalds in the
United States, other countries, or both). Data processing
system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit
206. Alternatively, a single processor system may be
employed.

Instructions for the operating system, the object-oriented
programming system, and applications or programs are
located on storage devices, such as HDD 226, and may be
loaded into main memory 208 for execution by processing
unit 206. The processes for illustrative embodiments of the
present invention may be performed by processing unit 206
using computer usable program code, which may be located
in a memory such as, for example, main memory 208, ROM
224, or in one or more peripheral devices 226 and 30, for
example.

A bus system, such as bus 238 or bus 240 as shown in
FIG. 2, may be comprised of one or more buses. Of course,
the bus system may be implemented using any type of
communication fabric or architecture that provides for a
transfer of data between different components or devices
attached to the fabric or architecture. A communication unit,
such as modern 222 or network adapter 212 of FIG. 2, may
include one or more devices used to transmit and receive
data. A memory may be, for example, main memory 208,
ROM 224, or a cache such as found in NB/MCH 202 in FIG.
2.

FIG. 3 is a block diagram depicting an example storage
system in accordance with an illustrative embodiment. Stor-
age enclosure 300, which may be storage system 134 or
storage system 136 in FIG. 1, for example, is comprised of
storage controller 302, which may be a redundant array of
independent disks (RAID) controller or a non-RAID con-
troller. Storage controller 302 communicates storage devices
312, 314, 316, and 318 through switch 304. Switch 304 may
be, for example, a serial attached SCSI (SAS) switch. Other
devices in a storage area network (SAN) may write data to
or read data from storage enclosure 300 by connection to
switch 304 via I/O interface 306. Storage controller 302 may
be a processor operating under control of instructions stored
in a memory (not shown).

In the depicted example, storage devices 312, 314, 316,
and 318 include solid-state drives (SSDs) 312, 314 and hard

US 9,459,808 B2

7

disk drives (HDDs) 316, 318. SSDs 312, 314 may be used
alongside HDDs 316, 318 in a tiered storage configuration.

Those of ordinary skill in the art will appreciate that the
hardware in FIGS. 1-3 may vary depending on the imple-
mentation. Other internal hardware or peripheral devices,
such as flash memory, equivalent non-volatile memory, or
optical disk drives and the like, may be used in addition to
or in place of the hardware depicted in FIGS. 1-3. Also, the
processes of the illustrative embodiments may be applied to
a multiprocessor data processing system, other than the SMP
system mentioned previously, without departing from the
spirit and scope of the present invention.

FIG. 4 is a block diagram illustrating a mechanism for
preventing large block writes from starving small block
writes in accordance with an illustrative embodiment. Pro-
cessor 410 is a storage controller for a solid-state drive
(SSD) in accordance with the illustrative embodiment. Pro-
cessor 410 receives a write operation 402. Processor 410
treats large block writes differently from small block writes
by dynamically allocating cache or buffer size to different
write block sizes. Because the object is to allow space into
write buffers, processor 410 configures buffer memory 420
with three types of buffer space: small block buffer portion
421, large block buffer portion 422, and shared buffer
portion 423. A large block write cannot write into small
block buffer portion 421. A small block write cannot write
into large block buffer portion 422. Both small and large
block writes can write into shared buffer portion 423.

A mode page setting may allow programmability. For
example, a mode page setting may set the large block
threshold at 48 KB such that writes of blocks smaller than
or equal to 48 KB are considered small block writes and
writes of blocks greater than 48 KB are considered large
block writes. In alternative embodiments processor 410 may
consider more than two categories and configure buffer
memory 420 accordingly.

In accordance with one example embodiment, a feedback
mechanism may be provided such that counters keep track
of large block and small block operations that have to wait
before going into the buffer. Processor 410 may include
small write counter (SM_CNTR) 411 and large write coun-
ter (LG_CNTR) 41. Processor 410 may increment small
write counter 411 responsive to a small write operation
having to wait before being stored in buffer memory 420 and
may increment large write counter 412 responsive to a large
write operation having to wait before being stored in buffer
memory 420. Processor 410 strives to keep this balanced by
checking how much buffer space each category can use.
Counters may keep track of both the number of commands
and amount of data written to both small and large block
buffer portions. Counters for small and large blocks that
would keep track of total delay for each size category may
also be included.

If processor 410 determines neither block size category is
experiencing delay due to no buffer space available (i.e.,
SM_CNTR 411 and LG_CNTR 412 are below a predeter-
mined threshold), then the sizes of small block buffer portion
421 and large block buffer portion 422 remain the same. If
both block size categories are experiencing latency within
specified limits, and both categories are experiencing about
the same blocking delay (i.e., the difference between
SM_CNTR 411 and LG_CNTR 412 is within a predeter-
mined threshold), then the sizes of small block buffer portion
421 and large block buffer portion 422 remain the same, it
should be noted that large blocks take longer to write so such
differences would be included in the threshold calculation. If
one block size is experiencing delay (i.e., only one of

25

40

45

8
SM_CNTR 411 or LG_CNTR 412 is greater than a prede-
termined threshold), then processor 410 takes some space
from the buffer portion not experiencing delay or the shared
buffer portion 423 and gives that space to the buffer portion
experiencing delay.

This feedback operation may be done in small increments
and may be tested over a relatively large time interval. In
other words, processor 410 may initialize counters 411, 412
by setting them to zero at the beginning of each time interval
and test for delay at the end of each time interval. These
adjustments may continue until stasis occurs.

In accordance with another example embodiment, a feed-
back mechanism may be provided such that counters 411,
412 keep track of the writes of the two transfer sizes. That
is, processor 410 may increment small write counter 411
responsive to a small write operation and may increment
large write counter 412 responsive to a large write operation.
Processor 410 may periodically determine whether the rate
of one block size or the other falls below a predetermined
threshold Some workloads may have very few or no large
block writes, for example. If this is the case, then processor
410 may determine large block write counter 412 falls below
a predetermined threshold and convert large block buffer
portion 422 into shared buffer memory. Alternatively, the
rate of small write operations may fail below a predeter-
mined threshold if the SSD is idle except for extended
peer-to-peer remote copy operations. In this case, responsive
to determining small block write counter 411 fails below a
predetermined threshold, processor 410 converts small
block buffer portion 421 into shared buffer memory. Pro-
cessor 410 may continue to monitor the rates of small block
writes and large block writes and switch back to dedicated
small block or large block write buffer portions if it detects
either blocking delays are skewed or counts for write
operations increase to exceed the predetermined threshold.

FIG. 5 is a block diagram illustrating a mechanism for
keeping bandwidth equal between large block writes and
small block writes in accordance with an illustrative
embodiment. Processor 510 is a storage controller for a
solid-state drive (SSD) in accordance with the illustrative
embodiment. Processor 510 receives a write operation 502
from initiator 550. Processor 510 performs the write opera-
tion by buffering the write in buffer memory 520 and
completing the write to solid-state drive memory 560. When
processor 510 completes a write operation, processor 510
sends a complete notification to initiator 550.

Processor 510 distinguishes between small block writes
and large block writes but does not buffer them differently.
Processor 510 keeps bandwidth equal between large and
small block transfers or keeps X % for small block transfers
and (100-X) % for large block transfers. The value of X may
be set in a mode page or may be determined by counters 511,
512 measuring response time, as described above with
reference to FIG. 4.

One way to do this is to assume or require the queue depth
of large and small block operations be controlled by the
initiator. The initiator will not send another large block
operation until a previous large block operation has com-
pleted. The initiator may also send a small block write
operation only when a previous small block write operation
has completed. Thus, if the SSD completes only small block
operations until X % of the bandwidth is consumed. The
initiator will then only send additional small block write
operations. Once X % of the bandwidth is consumed, the
SSD completes large block operations so the initiator can
send more large block write operations.

US 9,459,808 B2

9

For example, consider small blocks are 4 KB, large blocks
ace 400 KB, and X is 10%. Processor 510 completes eleven
small block operations (44 KB) before completing one large
block operation (400 KB). If X is 50%, the SSD completes
one hundred small block operations (400 KB) per large
block operation (400 KB).

As will be appreciated by one skilled in the art, the present
invention may be embodied as a system, method, or com-
puter program product. Accordingly, aspects of the present
invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
any one or more computer readable medium(s) having
computer usable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec-
tronic, magnetic, optical, electromagnetic, infrared, or semi-
conductor system, apparatus, device, or any suitable com-
bination of the foregoing. More specific examples (a non-
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable
compact disc read-only memory (CDROM), an optical
storage device, a magnetic storage device, or any suitable
combination of the foregoing. In the context of this docu-
ment, a computer readable storage medium may be any
tangible medium that can contain or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in a baseband or as part of
a carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-
magnetic, optical, or any suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a computer readable storage
medium and that can communicate, propagate, or transport
a program for use by or in connection with an instruction
execution system, apparatus, or device.

Computer code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, radio frequency (RF), etc., or any suitable combina-
tion thereof.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java™, Smalltalk™, C++, or the like, and conventional
procedural programming languages, such as the “C” pro-
gramming language or similar programming languages. The
program code may execute entirely on the user’s computer,
partly on the user’s computer, as a stand-alone software
package, partly on the user’s computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be

10

15

20

25

30

35

40

45

50

55

60

65

10

connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus systems) and computer program prod-
ucts according to the illustrative embodiments of the inven-
tion. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions that
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus, or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

FIG. 6 is a flowchart illustrating operation of a mechanism
for preventing large block writes from starving small block
writes in accordance with an illustrative embodiment.
Operation begins (block 600), and the mechanism deter-
mines small block buffer size and large block buffer size
(block 601). In this embodiment, the mechanism attempts to
balance the buffering of small block writes and large block
writes by selecting appropriate sizes for the small block
buffer size and the large block buffer size. The mechanism
configures the small and large buffer portions (block 602)
and begins a time interval (block 603).

The mechanism then determines whether a write opera-
tion is received from an initiator (block 604). If the mecha-
nism does not receive a write operation, the mechanism
determines whether the interval ends (block 605). If the
interval does not end, operation returns to block 604 to
determine whether a write operation is received.

If the mechanism receives a write operation in block 604,
the mechanism determines whether the write operation is a
small block write or a large block write (block 606). If the
write operation is a small block write, the mechanism
determines whether the small block write buffer is full
(block 607). If the small block buffer is not full, the
mechanism writes to the small buffer (block 608), and
operation proceeds to block 605 to determine whether the
interval ends. If the interval does not end, operation returns
to block 604 to determine whether a write operation is
received.

US 9,459,808 B2

11

If the small block buffer is full in block 607, the mecha-
nism records a small block delay (block 609). The mecha-
nism may record the small block delay by incrementing a
small block counter, for example. Thereafter, operation
proceeds to block 605 to determine whether the interval
ends, and if the interval does not end, operation returns to
block 604 to determine whether a write operation is
received.

If the write operation is a large block write in block 606,
the mechanism determines whether the large block buffer is
full (block 610). If the large block buffer is not fill, the
mechanism writes to the large block buffer (block 611), and
operation proceeds to block 605 to determine whether the
interval ends. If the interval does not end, operation returns
to block 604 to determine whether a write operation is
received.

If the large block buffer is full in block 610, the mecha-
nism records a large block delay (block 612). The mecha-
nism may record the large block delay by incrementing a
large block counter, for example. Thereafter, operation pro-
ceeds to block 605 to determine whether the interval ends,
and if the interval does not end, operation returns to block
604 to determine whether a write operation is received.

If the interval ends in block 605, operation returns to
block 601 to determine small block buffer size and large
block buffer size. The mechanism may then adjust the small
block buffer size and large block buffer size to reduce write
operation delays. If the mechanism determines neither block
size category is experiencing delay due to no buffer space
available, then the sizes of small block buffer and large block
buffer remain the same. If both block size categories are
experiencing about the same blocking delay, then the sizes
of'small block buffer and large block buffer remain the same.
If one block size is experiencing delay, then the mechanism
takes some space from the buffer not experiencing delay and
gives that space to the buffer experiencing delay.

This feedback operation may be done in small increments
and may be tested over a relatively large time interval. In
other words, the mechanism may initialize counters by
setting them to zero at the beginning of each time interval
and test for delay at the end of each time interval. These
adjustments may continue until stasis occurs. In an alterna-
tive embodiment, the mechanism may also adjust the thresh-
olds used to determine whether the buffer size categories are
experiencing blocking delay.

FIG. 7 is a flowchart illustrating operation of a mechanism
for preventing large block writes from starving small block
writes using small, large, and shared write buffers in accor-
dance with an illustrative embodiment. Operation begins
(block 700), and the mechanism determines small block
buffer size and large block buffer size (block 701). In this
embodiment, the mechanism attempts to balance the buft-
ering of small block writes and large block writes by
selecting appropriate sizes for the small block buffer size and
the large block buffer size. The mechanism configures the
small buffer portion, large buffer portion, and a shared buffer
portion (block 702) and begins a time interval (block 703).

The mechanism then determines whether a write opera-
tion is received from an initiator (block 704). If the mecha-
nism does not receive a write operation, the mechanism
determines whether the interval ends (block 705). If the
Interval does not end, operation returns to block 704 to
determine whether a write operation is received.

If the mechanism receives a write operation in block 704,
the mechanism determines whether the write operation is a
small block write or a large block write (block 706). If the
write operation is a small block write, the mechanism

10

15

20

25

30

35

40

45

50

55

60

65

12

determines whether the small block write buffer is full
(block 707). If the small block buffer is not full, the
mechanism writes to the small buffer (block 708), and
operation proceeds to block 705 to determine whether the
interval ends. If the interval does not end, operation returns
to block 704 to determine whether a write operation is
received.

If the small block buffer is full in block 707, the mecha-
nism determines whether the shared buffer is full (block
709). If the shared buffer is not full, the mechanism writes
to the shared buffer (block 710), and operation proceeds to
block 705 to determine whether the interval ends. If the
shared buffer is full in block 709, the mechanism records a
small block delay (block 711). The mechanism may record
the small block delay by incrementing a small block counter,
for example. Thereafter, operation proceeds to block 705 to
determine whether the interval ends, and if the interval does
not end, operation returns to block 704 to determine whether
a write operation is received.

If the write operation is a large block write in block 706,
the mechanism determines whether the large block buffer is
full (block 712). If the large block buffer is not full, the
mechanism writes to the large block buffer (block 713), and
operation proceeds to block 705 to determine whether the
interval ends. If the interval does not end, operation returns
to block 704 to determine whether a write operation is
received.

If the large block buffer is full in block 712, the mecha-
nism determines whether the shared buffer is full (block
714). If the shared buffer is not full, the mechanism writes
to the shared buffer (block 715), and operation proceeds to
block 705 to determine whether the interval ends. If the
shared buffer is full in block 714, the mechanism records a
large block delay (block 716). The mechanism may record
the large block delay by incrementing a large block counter,
for example. Thereafter, operation proceeds to block 705 to
determine whether the interval ends, and if the interval does
not end, operation returns to block 704 to determine whether
a write operation is received.

If the interval ends in block 705, operation returns to
block 701 to determine small block buffer size and large
block buffer size. The mechanism may then adjust the small
block buffer size and large block buffer size to reduce write
operation delays. If the mechanism determines neither block
size category is experiencing delay due to no buffer space
available, then the sizes of small block buffer and large block
buffer remain the same. If both block size categories are
experiencing about the same blocking delay, then the sizes
of'small block buffer and large block buffer remain the same.
If one block size is experiencing delay, then the mechanism
takes some space from the buffer not experiencing delay and
gives that space to the buffer experiencing delay.

This feedback operation may be done in small increments
and may be tested over a relatively large time interval. In
other words, the mechanism may initialize counters by
setting them to zero at the beginning of each time interval
and test for delay at the end of each time interval. These
adjustments may continue until stasis occurs. In an alterna-
tive embodiment, the mechanism may also adjust the thresh-
olds used to determine whether the buffer size categories are
experiencing blocking delay.

FIG. 8 is a flowchart illustrating operation of a mechanism
for preventing large block writes from starving small block
writes using dedicated small and large write buffers in
accordance with an illustrative embodiment. Operation
begins (block 800), and the mechanism configures dedicated
small and large block buffers and a shared buffer (block

US 9,459,808 B2

13

801). The mechanism then begins a time interval (block
802). The mechanism performs writes to small block, large
block, and shared buffers and counts small block writes and
large block writes (block 803).

The mechanism determines whether the time interval ends
(block 804). If the time interval has not ended in block 804,
operation returns to block 803 to continue to perform writes
and count small and large block writes. If the mechanism
determines that the time interval has ended in block 804, the
mechanism enables or disables the dedicated small block
write buffer or the dedicated large block write buffer based
on the write counts (block 805). Thereafter, operation
returns to block 802 to restart the time interval.

In this embodiment, the mechanism periodically deter-
mines whether the rate of one block size or the other falls
below a predetermined threshold. Some workloads may
have very few or no large block writes, for example. If this
is the case, then the mechanism may determine a large block
write counter falls below a predetermined threshold and
convert the dedicated large block buffer into shared buffer
memory. Alternatively, the rate of small write operations
may fall below a predetermined threshold if the SSD is idle
except for extended peer-to-peer remote copy operations. In
this case, responsive to determining a small block write
counter falls below a predetermined threshold, the mecha-
nism may convert the dedicated small block buffer into
shared buffer memory. The mechanism may continue to
monitor the rates of small block writes and large block
writes and switch back to dedicated small block or large
block write buffer portions in block 805 if it detects either
blocking delays are skewed or counts for write operations
increase to exceed the predetermined threshold. In an alter-
native embodiment, the mechanism may also adjust the
thresholds based on the workloads being experienced.

FIG. 9 is a flowchart illustrating operation of a mechanism
in a solid-state drive for balancing bandwidth between large
block writes and small block writes in accordance with an
illustrative embodiment. Operation begins (block 900), and
the mechanism determines a percentage of bandwidth to be
used for small block writes (block 901). The mechanism
then determines whether a write operation is received (block
902). If the mechanism receives a write operation from an
initiator, the mechanism buffers the write (block 903).

Thereafter, or if a write is not received in block 902, the
mechanism determines whether a small block write is in the
write buffer (block 904). If there is a small block write in the
write buffer, the mechanism completes the write by persist-
ing the write to the solid-state memory (block 905). The
mechanism then sends a complete message to the initiator
(block 906) and updates a small block write count (block
907).

The mechanism then determines whether the bandwidth
percentage for small block writes is reached (block 908). For
example, consider small blocks are 4 KB, large blocks are
400 KB, and the small block percentage, X, is 10%. The
mechanism completes eleven small block operations (44
KB) before completing one large block operation (400 KB).
If X is 50%, the SSD completes one hundred small block
operations (400 KB) per large block operation (400 KB). If
the bandwidth percentage for small block writes is not
reached in block 908, operation returns to block 902 to
determine whether a write operation is received from the
initiator.

If the bandwidth percentage for small block writes is
reached in block 908, or if there is no small block write in
the write buffer in block 904, the mechanism determines
whether a large block write is in the write buffer (block 909).

10

15

20

25

30

35

40

45

50

55

60

65

14

If there is not a large block write in the write buffer,
operation returns to block 902 to determine whether a write
operation is received. If there is a large block write in the
write buffer in block 909, the mechanism completes the
write (block 910) and sends a complete message to the
initiator (block 911). Thereafter, operation returns to block
902 to determine whether a write operation is received from
the initiator.

The bandwidth is balanced by completing a predeter-
mined number of small block writes before completing a
large block write. The mechanism assumes or requires the
queue depth of large and small block operations be con-
trolled by the initiator. The initiator will not send another
large block operation until a previous large block operation
has completed. The initiator may also send a small block
write operation only when a previous small block write
operation has completed. Thus, if the SSD completes only
small block operations until X % of the bandwidth is
consumed. The initiator wilt then only send additional small
block write operations. Once X % of the bandwidth is
consumed, the SSD completes large block operations so the
initiator can send more large block write operations.

FIG. 10 is a flowchart illustrating operation of mechanism
in an initiator for balancing bandwidth between large block
writes and small block writes in accordance with an illus-
trative embodiment. Operation begins (block 1000), and the
mechanism determines whether a write operation is queued
to be sent to the storage device (block 1001). If a write
operation is not to be sent to the storage device, operation
returns to block 1001 to repeat until a write operation is
queued to be sent to the storage device.

If a write operation is to be sent to the storage device in
block 1001, the mechanism determines whether the write
operation is a small block write or a large block write (block
1002). If the write operation is a small block write, the
mechanism sends the write operation to the storage device
(block 1003), and operation returns to block 1001. If the
write operation is a largo block write, the mechanism
determines whether a large block write is outstanding (block
1004). If a large block write is outstanding, the mechanism
waits for the large block write to be completed, and opera-
tion returns to block 1001. If a large block write is not
outstanding in block 1004, the mechanism sends the write
operation to the storage device (block 1003), and operation
returns to block 1001.

The flowchart and block diagrams in the figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

US 9,459,808 B2

15

Thus, the illustrative embodiments provide mechanisms
to allow both large block and small block writes optimal
bandwidth and to automatically adjust depending on
changes in the workload. Write buffers or caches in the
storage device are broken into categories. Some of the
buffers are dedicated to large block writes and some to small
block writes. Some buffers may serve both small and large
block writes. The mechanisms may adjust the sizes of these
buffers depending on changes in the workload, responsive
determining that small block or large block response time
increases. The mechanisms may convert dedicated small or
large block buffers to shared buffers responsive to write
counts of a given category falling below a predetermined
threshold. The mechanism may dedicated a bandwidth per-
centage to small block writes to ensure small block writes
are not starved.

As noted above, it should be appreciated that the illus-
trative embodiments may take the form of an entirely
hardware embodiment, an entirely software embodiment or
an embodiment containing both hardware and software
elements. In one example embodiment, the mechanisms of
the illustrative embodiments are implemented in software or
program code, which includes but is not limited to firmware,
resident software, microcode, etc.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local
memory employed during actual execution of the program
code, bulk storage, and cache memories which provide
temporary storage of at least some program code in order to
reduce the number of times code must be retrieved from bulk
storage during execution.

Input/output or I/O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled
to the system either directly or through intervening /O
controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems and Ethernet cards are
just a few of the currently available types of network
adapters.

The description of the present invention has been pre-
sented for purposes of illustration and description, and is not
intended to be exhaustive or limited to the invention in the
form disclosed. Many modifications and variations will be
apparent to those of ordinary skill in the art. The embodi-
ment was chosen and described in order to best explain the
principles of the invention, the practical application, and to
enable others of ordinary skill in the art to understand the
invention for various embodiments with various modifica-
tions as are suited to the particular use contemplated.

What is claimed is:

1. A computer program product comprising a non-transi-
tory computer readable storage medium having a computer
readable program stored therein, wherein the computer
readable program, when executed on a processor of a storage
device, causes the processor to:

configure a write buffer memory with a plurality of write

buffer portions, wherein each write buffer portion is
dedicated to a predetermined block size category within
a plurality of block size categories;

for each write operation from an initiator, determine a

block size category of the write operation;

20

25

40

45

50

60

65

16

perform each write operation by writing to a write buffer
portion within the plurality of write buffer portions
corresponding to the block size category of the write
operation;

determine a bandwidth percentage for a first block size

category,

complete writes of only the first block size category until

the bandwidth percentage is reached; and

complete a write of the second block size category

responsive to the bandwidth percentage being reached.

2. The computer program product of claim 1, wherein the
computer readable program further causes the processor to:

responsive to a write buffer portion corresponding to a

block size category of a given write operation being
full, update a blocking delay value for the block size
category of the given write operation.

3. The computer program product of claim 2, wherein the
computer readable program further causes the processor to:

adjust sizes of the plurality of write buffer portions based

on blocking delay values of the block size categories.

4. The computer program product of claim 1, wherein
configuring the write buffer memory comprises configuring
a shared buffer portion, wherein the shared buffer portion
stores writes of all block size categories, wherein the com-
puter readable program further causes the processor to:

responsive to a write buffer portion corresponding to a

block size category of a given write operation being
full, perform the given write operation by writing to the
shared buffer portion.

5. The computer program product of claim 4, wherein the
computer readable program further causes the processor to:

responsive to the shared buffer portion being full, update

ablocking delay value for the block size category of the
given write operation.

6. The computer program product of claim 4, wherein the
computer readable program further causes the processor to:

for each write operation from the initiator, increment a

counter corresponding to the block size category of the
write operation;

responsive to expiration of a time interval, determine

whether a given counter corresponding to a given block
size category is less than a predetermined threshold;
and

responsive to the given counter being less than the pre-

determined threshold, convert the write buffer portion
corresponding to the given block size category to a
shared buffer portion.

7. The computer program product of claim 6, wherein the
computer readable program further causes the processor to:

restart the time interval,

for each write operation from the initiator, increment a

counter corresponding to the block size category of the
write operation;

responsive to expiration of the time interval, determine

whether the given counter is greater than the predeter-
mined threshold; and

responsive to the given counter being greater than the

predetermined threshold, reconfigure the write buffer
portion corresponding to the given block size.

8. The computer program product of claim 1, wherein the
computer readable program is stored in a computer readable
storage medium in a data processing system and wherein the
computer readable program was downloaded over a network
from a remote data processing system.

9. The computer program product of claim 1, wherein the
computer readable program is stored in a computer readable
storage medium in a server data processing system and

US 9,459,808 B2

17

wherein the computer readable program is downloaded over
a network to a remote data processing system for use in a
computer readable storage medium with the remote system.

10. A method, in a storage device, for performing a write
operation, the method comprising:

configuring a write buffer memory with a plurality of

write buffer portions, wherein each write buffer portion
is dedicated to a predetermined block size category
within a plurality of block size categories;
for each write operation from an initiator, determining a
block size category of the write operation;

performing each write operation by writing to a write
buffer portion within the plurality of write buffer por-
tions corresponding to the block size category of the
write operation;

determining a bandwidth percentage for a first block size

category,

completing writes of only the first block size category

until the bandwidth percentage is reached; and
completing a write of the second block size category
responsive to the bandwidth percentage being reached.

11. The method of claim 10, further comprising:

responsive to a write buffer portion corresponding to a

block size category of a given write operation being
full, updating a blocking delay value for the block size
category of the given write operation.

12. The method of claim 11, further comprising:

adjusting sizes of the plurality of write buffer portions

based on blocking delay values of the block size
categories.

13. The method of claim 10, wherein configuring the write
buffer memory comprises configuring a shared buffer por-
tion, wherein the shared buffer portion stores writes of all
block size categories, the method further comprising:

responsive to a write buffer portion corresponding to a

block size category of a given write operation being
full, performing the given write operation by writing to
the shared buffer portion.

14. The method of claim 13, further comprising:

responsive to the shared buffer portion being full, updat-

ing a blocking delay value for the block size category
of the given write operation.

15. The method of claim 13, further comprising:

for each write operation from the initiator, incrementing a

counter corresponding to the block size category of the
write operation;

responsive to expiration of a time interval, determining

whether a given counter corresponding to a given block
size category is less than a predetermined threshold;
and

responsive to the given counter being less than the pre-

determined threshold, converting the write buffer por-
tion corresponding to the given block size category to
a shared buffer portion.

16. The method of claim 15, further comprising:

restarting the time interval;

for each write operation from the initiator, incrementing a

counter corresponding to the block size category of the
write operation;

responsive to expiration of the time interval, determining

whether the given counter is greater than the predeter-
mined threshold; and

responsive to the given counter being greater than the

predetermined threshold, reconfiguring the write buffer
portion corresponding to the given block size.

18
17. An apparatus, comprising:
a processor; and
a memory coupled to the processor, wherein the memory
comprises instructions which, when executed by the
5 processor, cause the processor to:

configure a write buffer memory with a plurality of write
buffer portions, wherein each write buffer portion is
dedicated to a predetermined block size category within
a plurality of block size categories;

for each write operation from an initiator, determine a

block size category of the write operation;

perform each write operation by writing to a write buffer

portion within the plurality of write buffer portions
corresponding to the block size category of the write
operation;

determine a bandwidth percentage for a first block size

category,

complete writes of only the first block size category until

the bandwidth percentage is reached; and

complete a write of the second block size category

responsive to the bandwidth percentage being reached.

18. The apparatus of claim 17, wherein the instructions
further cause the processor to:

responsive to a write buffer portion corresponding to a

block size category of a given write operation being
full, update a blocking delay value for the block size
category of the given write operation; and

adjust sizes of the plurality of write of buffer portions

based on blocking delay values of the block size
categories.

19. The apparatus of claim 17, wherein configuring the
write buffer memory comprises configuring a shared buffer
portion, wherein the shared buffer portion stores writes of all
block size categories, wherein the instructions further cause
the processor to:

responsive to a write buffer portion corresponding to a

block size category of a given write operation being
full, perform the given write operation by writing to the
shared buffer portion.

20. The apparatus of claim 19, wherein the instructions
further cause the processor to:

responsive to the shared buffer portion being full, update

ablocking delay value for the block size category of the
given write operation.

21. The apparatus of claim 19, wherein the instructions
further cause the processor to:

for each write operation from the initiator, incrementing a

counter corresponding to block size category of the
write operation;

responsive to expiration of a time interval, determining

whether a given counter corresponding to a given block
size category is less than a predetermined threshold;
and responsive to the given counter being less than the
predetermined threshold, converting the write buffer
portion corresponding to the given block size category
to a shared buffer portion.

22. The apparatus of claim 21, wherein the instructions
further cause the processor to:

restart the time interval,

for each write operation from the initiator, increment a

counter corresponding to the block size category of the
write operation;

responsive to expiration of the time interval, determine

whether the given counter is greater than the predeter-
mined threshold; and

responsive to the given counter being greater than the

predetermined threshold, reconfigure the write buffer
portion corresponding to the given block size.

10

15

20

25

30

35

40

50

55

60

#* #* #* #* #*

